

Tema_5. Química del Boro

(adaptada de: G. Rayner-Canham, *Química Inorgánica Descriptiva*, 2ª ed, Pearson Educación, 2000)

unidad estructural del boro elemental

(adaptada de: P. Atkins, L. Jones, *Chemistry: Molecules*, *Matter and Change*, 4th ed, W. H. Freeman and Co, 2000)

Prof. Responsable: José María Moratal Mascarell Catedràtic de Química Inorgànica (jose.m.moratal@uv.es)

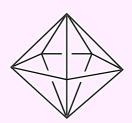
Facultat de Química

Tema 5. Química del Boro

Indice

- 1. Descubrimiento y Estado natural
- 2. Boro elemental
 - características generales, alotropía, reactividad, obtención
- 3. Tipo de enlace en los compuestos de boro
- 4. Compuestos del boro
 - 1. Trihaluros de boro
 - 2. Oxidos de boro
 - 3. Oxoácidos de boro
 - 4. Boratos
 - 5. Boruros
 - 6. Boranos

Química Inorgànica-I, 2019


2

n = 5Trigonal
bipyramid

n = 6Octahedron

n = 7Pentagonal bipyramid

Icosahedron

Algunos deltaedros que debemos conocer

(los poliedros que contienen caras triangulares se denominan genéricamente deltaedros)

deltaedros	vértices	nº caras
bipirámide trigonal	5	6
octaedro	6	8
bipirámide pentagonal	! 7	10
antiprisma cuadrado	. 10	16
icosaedro	12	20

(adaptada de: C. E. Housecroft, A. G. Sharpe, *Inorganic Chemistry*, 4th ed, Pearson Ed. Ltd, 2012)

1. Descubrimiento y Estado natural

- bórax conocido desde la antigüedad → utilizado en fabricación vidrios
- siglo XVIII, H. Davy, J. L. Gay Lussac, L. J. Thenard
 - obtienen muestras muy impuras de B
- 1892, H. Moissan

1. Descubrimiento

- muestras de B pureza 95-98% → reducción de B₂O₃ con Mg
- 2. ¿Cómo se encuentra en la naturaleza?
 - gran afinidad por el oxígeno → formando oxocompuestos (boratos)
 - aunque muy escaso en la corteza terrestre → posición 38º por abundancia
 - afortunadamente se presenta concentrado en grandes depósitos de boratos
 - $Na_2B_4O_7 \cdot 10 H_2O$ (bórax) $Na_2B_4O_7 \cdot 4 H_2O$ (kernita)
 - mayor depósito → Boron (California)
 - lechos de kernita de casi 50 m de espesor y ~10 km² de extensión
 - principales depósitos de boratos
 - California (desierto de Mojave), Turquía, Rusia, Tibet, Argentina

3

1. Características generales

2. Boro elemental

- 1.- ¿Configuración electrónica (Z = 5)?
- 2.- ¿Isótopos naturales estables? ¿pocos o varios?
 - Z = impar \rightarrow sólo 2 isótopos naturales estables (10 B, 11 B)
 - sólo ¹0B → gran capacidad para absorción neutrones

configuración electrónica	nº de isótopos naturales	abundancia isótopos naturales	sección eficaz para captura de neutrones y partículas α (en barns)
[He] 2s ² 2p ¹	2	¹⁰ B 19,6%	$^{10}{}_{5}B = 3835$
		¹¹ B 80,4%	${}^{11}_5$ B = 0,005
			B (natural) ≈ 767

3.- Energías de ionización elevadas(*); electronegatividad (χ)

Energía de ionización (kJ·mol ⁻¹)	EI ₁ 801	EI ₂ 2427	EI ₃ 3660	EI ₄ 25030
Electronega-	B	H	C	Si
tividad (χ)	2,0	2,2	2,5	1,9

- ¿por qué I₄ >> I₃?
- polaridad de enlace B-H vs. C-H?

(*) $I_1(Na) = 520 \text{ kJ/mol}$

5

1. Características generales

- 4.- Carácter metálico/no metálico
 - único elemento del grupo 13 no metálico
 - se puede considerar no metal → extensa química de oxoaniones e hidruros
 - se puede clasificar como semi-metal → baja conductividad eléctrica

2. Boro elemental

Conductividad eléctrica a 298 K (ohm ⁻¹ ·cm ⁻¹)	1,5x10 ⁻⁶
Punto de fusión (° C)	2180
$\Delta H^{o}_{atomiz}(kJ \cdot mol^{-1})$	582
Radio covalente (Å)	0,88
Densidad 20°C (g·cm ⁻³)	2,35

- 5.- Aspecto del boro
 - sólido color oscuro, brillo metálico
 - lacktriangledown elevado p. f. ¿por qué? \Longrightarrow ruptura enlaces de red covalente (ΔH^o_{atomiz} elevada)
 - refractario y de gran dureza (próxima a diamante)

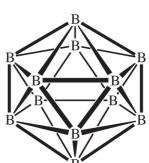
2. Estructura del boro elemental

- 1.- Singularidad del boro
 - a) único no metal que tiene más orbitales de valencia (4) que electrones (3)
 - habitual entre metales/los elementos con esta situación presentan enlace metálico

2. Estructura del boro elemental

2. Boro elemental

- 1.- Singularidad del boro
 - b) por la complejidad estructural de sus formas alotrópicas
 - reflejo de diversidad de estrategias mediante las cuales el boro resuelve el problema de tener menos electrones de valencia que orbitales disponibles para el enlace


2. Estructura del boro elemental

(de: G. L. Miessler, D. A. Tarr, *Inorganic Chemistry*, 4th ed, Pearson Prentice Hall, 2011)

- 2.- ¿Unidad estructural?
 - todas las modificaciones cristalinas constan de ...
 - una red extensa formada por icosaedros B₁₂
 - icosaedro → 12 vértices, 20 caras triangulares
 - etimología de icosaedro
 - » del griego eikosaedron: éikosi → veinte; hedra → cara

- » la arista sólo tiene significado geométrico
- » cada B del icosaedro se une a otros 5 B y no dispone de 5 OA's
- general- cada B se une a otros 6B (5 del icosaedro) y usa 3 e⁻ → OE promedio $\frac{1}{2}$

2. Estructura del boro elemental

2. Boro elemental

- 3.- Boro α-romboédrico
 - alótropo más simple y de mayor densidad, red 3-D covalente
 - empaquetamiento cúbico compacto de icosaedros ¿enlace?
 - unión de icosaedros dentro de una lámina → enlaces tricéntricos
 - unión entre las láminas → enlaces covalentes B-B

(adaptada de: C. E. Housecroft, A. G. Sharpe, Inorganic Chemistry, 4th ed, Pearson Ed. Ltd, 2012) Parte de una capa de red infinita de Boro α -romboédrico: se muestran las unidades de construcción icosaédricas- B_{12} que están unidas covalentemente originando una red rígida infinita

- 4.- Boro β-romboédrico
 - alótropo más estable termoquímicamente
 - aglomeración de icosaedros en una red 3-D covalente complicada
 - descripción aproximada
 - aglomeración de icosaedros donde cada
 B₁₂ está rodeado por otros 12 icosaedros

3. Reactividad del Boro

2. Boro elemental

- reactividad depende de:
 - la pureza, cristalinidad, estado de división y temperatura
- 1.- Reactividad en condiciones ambientales (TPAE)
 - químicamente bastante inerte
 - excepto vs. F₂
 - no es atacado por los ácidos ni los álcalis
 - el O₂ lo ataca sólo superficialmente
- 2.- Reactividad en caliente o temperatura elevada
 - atacado por ácidos oxidantes (HNO₃) → en caliente y finamente dividido

$$B(s) + 3 \text{ HNO}_3(\text{conc}) \xrightarrow{\Delta} H_3 BO_3(\text{ac}) + 3 \text{ NO}_2(g)$$

• elevada afinidad por el $O_2(*)$: arde a 700 °C \longrightarrow B_2O_3

2 B(s) + 3/2 O₂(g)
$$\xrightarrow{\Delta}$$
 B₂O₃(l); Δ S° < 0;

$$\Delta G_{f}^{o}(B_{2}O_{3}) = -1194 \text{ kJ} \cdot \text{mol}^{-1}; \Delta H_{f}^{o}(B_{2}O_{3}) = -1273 \text{ kJ} \cdot \text{mol}^{-1}$$

0

3. Reactividad del Boro

2. Boro elemental

- 2.- Reactividad en caliente o temperatura elevada
 - reacciona directamente con los no metales (excepto H, Ge, Te y gases nobles)
 - p. ej. con halógenos X_2 → BX_3
 - reacciona con la mayoría de los metales a ta elevada
 - excepciones → metales más pesados de los grupos 11 al 15

4. Obtención del Boro

- no es fácil obtener boro cristalino de alta pureza
 - generalmente se obtiene boro amorfo impurificado
- 1.- Método de Moissan y variantes → B amorfo de riqueza 95-98%
 - reducción de B₂O₃ con metales reductores a t^a elevada

$$B_2O_3(s) + 3 Mg(l) \xrightarrow{\Delta} 2 B(s) + 3 MgO(s)$$

4. Obtención del Boro 2. Boro elemental

- 1.- Método de Moissan y variantes → B amorfo de riqueza 95-98%
 - MgO se puede eliminar mediante reacción con un ácido mineral
 - el óxido B_2O_3 , a su vez, se obtiene a partir del bórax $(Na_2B_4O_7 \cdot 10 H_2O)$

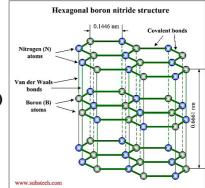
i)
$$Na_2[B_4O_5(OH)_4] \cdot 8 H_2O + H_2SO_4 \rightarrow 4 B(OH)_3 + Na_2SO_4 + 5 H_2O$$

ii)
$$2 B(OH)_3 \xrightarrow{\Delta} B_2O_3 + 3 H_2O$$

- 2.- Obtención de Boro cristalino puro → riqueza > 99,9%
 - reducción, en fase vapor, de BCl₃ o BBr₃ con H₂ en filamento de tántalo (~1000 °C)

$$BBr_3(g) + 3/2 H_2(g) \xrightarrow{\Delta} B(s) + 3 HBr(g)$$

11


3. Tipo de enlace en los compuestos del Boro

- 1) química del boro → determinada por su pequeño tamaño y elevadas EI's
 - junto con un χ similar a la de H y C origina una amplia e inusual química covalente (molecular)

radio covalente	densida	ad de carg	a de los	iones (C	·mm ⁻³)
del Boro (Å)	"B ³⁺ "	"Si ⁴⁺ "	Al ³⁺	Na+	Mg ²⁺
0,88	1664	970	364	24	120

- debido a su pequeño tamaño y elevadas EI's
 - » hipotético B³+ sería muy polarizante
- 3) actúa como tricovalente
- 4) ¿enlace en los compuestos de B? ¿tipo de compuestos?
 - esencialmente moleculares (enlace covalente polarizado)

compuestos BX ₃	F	Cl	Br	I	_
p. f. (°C)	-127	-107	- 46	+50	
$E(B-X) (kJ \cdot mol^{-1})$	646	444	368	267	*E(B-H) = 373

(*) BN p. f. = 2967 °C
$$\rightarrow$$
 red covalente, (aislante)

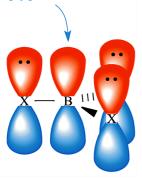
1. Trihaluros de Boro

4. Compuestos del Boro

- 1.- Propiedades de los compuestos BX₃, ¿tipo de compuestos?
 - se conocen todos los trihaluros
 - compuestos moleculares, volátiles, monómeros y muy reactivos
 - no presentan tendencia a dimerizar

compuestos BX ₃	F	Cl	Br	I
p. f. (°C)	-127,1	-107	-46	+49,9
p. e. (°C)	-99,9	12,5	91,3	210
aspecto a TPAE	gas incoloro	líquido incoloro	líquido incoloro	sólido blanco
d(B-X) (pm)	130	175	187	210
$E(B-X) (kJ \cdot mol^{-1})$	646	444	368	267
$\Delta H_{f}^{o}(kJ\cdot mol^{-1})$ (gas)	-1136	-404	-208	>0

- •2.- ¿Estructura y enlace? ¿ángulo XBX? ¿OE?
 - molécula BX₃ trigonal plana, < XBX = 120°, hibridación sp²

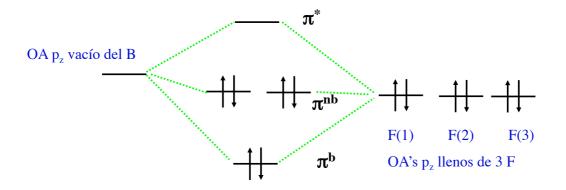

13

1. Trihaluros de Boro

4. Compuestos del Boro

- 2.- ¿Estructura y enlace? ¿ángulo XBX? ¿OE?
- energía de enlace B–F muy elevada (646 kJ·mol⁻¹)
 - mucho mayor de lo esperado para enlace simple
 - p. ej. enlace $C-F = 485 \text{ kJ} \cdot \text{mol}^{-1}$
- además, distancia enlace B-F sensiblemente menor que la calculada
 - enlace simple en $BF_4^- \rightarrow d(B-F) = 140 \text{ pm}$
- ¿cómo se puede explicar la gran fuerza del enlace B-F?

Empty *p* atomic orbital

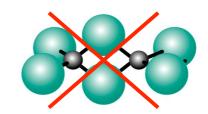

- formación de enlace π deslocalizado
- enlaces σ → B utiliza hibridación sp² (sp_xp_y, plano xy)
- enlace $\pi \rightarrow OA p_z$ vacío del B solapa con p_z lleno de cada átomo de F
 - » sistema π deslocalizado \rightarrow OE = 1 + 1/3

The formation of partial π -bonds in a trigonal planar BX₃ molecule can be considered in terms of the donation of electron density from filled p atomic orbitals on the X atoms into the empty 2p orbital on boron.

(adaptada de: C. E. Housecroft, A. G. Sharpe, Inorganic Chemistry, 4th ed, Pearson Ed. Ltd, 2012)

1. Trihaluros de Boro

4. Compuestos del Boro


• formación de enlace π deslocalizado entre B y 3 F

15

1. Trihaluros de Boro

•2.- Estructura y enlace

- ¿por qué los trihaluros BX₃ no tienen tendencia a dimerizar?
 - trihaluros de los otros elementos del grupo 13 se dimerizan [p. ej. Al_2Br_6 , p. f. = 97,5 °C]
 - ¿factores a considerar?

(adaptada de: P. Atkins, L. Jones, Chemistry: Molecules, Matter and Change, 4th ed, W. H. Freeman and Co, 2000)

- » i) BCl₃ y BBr₃ → el factor más importante, probablemente, sería el estérico debido al pequeño tamaño del átomo de B que impediría la dimerización, (además de la pérdida de enlace π)
- » ii) $BF_3 \rightarrow$ el impedimento estérico sería menor (de hecho el BF_4 es estable) y el factor más importante sería la pérdida de estabilización por enlace π
- 3.- Reactividad de los trihaluros BX₃
 - 1) reacción con H₂O (hidrólisis de haluro molecular)
 - todos reaccionan violentamente con el agua (excepto BF₃*)

• 3.- Reactividad de los trihaluros BX₃

4. Compuestos del Boro

1) reacción con H₂O (hidrólisis de haluro molecular)

$$BX_3 + 3 H_2O \rightarrow B(OH)_3 + 3 HX$$
 (X = Cl, Br, I)

- 2) Acidez de Lewis: carácter aceptor de los compuestos BX₃
 - forman aductos con bases de Lewis → fosfinas, aminas, éteres, ...

$$\rightarrow Me_3N \rightarrow BCl_3$$
; $Et_2O \rightarrow BF_3$

- ¿fuerza realtiva como ácidos de Lewis?

$$\rightarrow$$
 BI₃ > BBr₃ > BCl₃ > BF₃

- orden $\it opuesto$ al esperado teniendo en cuenta la diferencia en χ $(\Delta\chi_{BX})$ e impedimentos estéricos
 - » F muy x → BF₃ debería ser el de mayor capacidad aceptora
 - » F pequeño tamaño → BF₃ debería ser el que presentara menor impedimento estérico para formar el aducto L→BF₃
- pero ... concordante con la existencia de enlace π en BX₃,
 - » magnitud de la componente $\pi \rightarrow BF_3 > BCl_3 > BBr_3 > BI_3$

17

1. Trihaluros de Boro

- 4.- Síntesis de los trihaluros BX₃
 - 1) BF₃
 - en USA se utilizan 4000 T/año de BF₃
 - » como ácido de Lewis y como catalizador de reacciones orgánicas
 - se puede preparar por fluoración del B₂O₃ con CaF₂ y H₂SO₄(conc)

$$B_2O_3(s) + 3 CaF_2(s) + 3 H_2SO_4(conc) \rightarrow 2 BF_3(g) + 3 CaSO_4(s) + 3 H_2O(l)$$

- el HF es generado in situ: $CaF_2 + H_2SO_4(conc)$ → 2 HF + $CaSO_4$
- 2) BCl₃ y BBr₃
 - -a escala industrial → halogenación directa del B_2O_3 en presencia de C $B_2O_3(l) + 3 C(s) + 3 Cl_2(g)$ → $2 BCl_3(g) + 3 CO(g)$
- 3) BI₃
 - reacción a alta temperatura

$$BCl_3(g) + 3HI(g) \xrightarrow{\Delta} BI_3(g) + 3HCl(g)$$

2. Oxidos del Boro

4. Compuestos del Boro

- $\bullet B_2O_3$
 - óxido más importante del boro
 - -óxido ácido, p. f. 450 °C, p.e. 2250 °C (extrapolado) → red covalente polarizada
 - reacciona con el agua → ácido bórico (H₃BO₃)

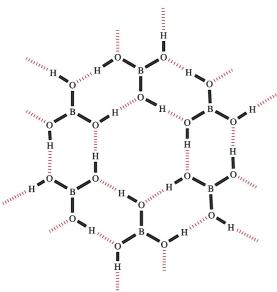
$$B_2O_3 + 3 H_2O \rightarrow 2 H_3BO_3$$

- 1) Obtención
 - difícil de cristalizar; se obtiene en forma cristalina mediante ...
 - » deshidratación controlada del ácido bórico

$$2 \text{ H}_3 \text{BO}_3 \xrightarrow{\Delta} \text{B}_2 \text{O}_3 + 3 \text{ H}_2 \text{O}$$

- 2) Estuctura
 - red covalente polarizada tridimensional
 - unidades trigonales planas BO₃ comparten átomos de oxígeno (BOB)
 - > d (B-O) = 138 pm
 - -las unidades BO₃ están giradas una respecto a otra → red 3D rígida

19


2. Oxidos del Boro

- \bullet B₂O₃
 - 3) Importancia comercial
 - producción anual USA $\sim 25 \cdot 10^3 \, \mathrm{T}$
 - principal aplicación → industria del vidrio
 - » obtención de vidrio de borosilicato (Pyrex) resistente al choque térmico
 - » pequeño coeficiente de expansión térmica y fácil de trabajar
 - cuando se calienta fuertemente el vidrio ordinario se puede fracturar ya que es mal conductor del calor
 - » mientras que la parte exterior caliente intenta expandirse, la parte interior aún está fría
 - » la tensión entre exterior e interior causa la fractura del vidrio
 - la sustitución de sodio de la estructura del vidrio por boro, reduce la expansividad térmica a menos de la mitad de la del vidrio ordinario
 - por ello, el vidrio Pyrex se puede calentar y enfriar sin que se fracture
 - el vidrio de borosilicato se obtiene fundiendo conjuntamente B₂O₃ y SiO₂
 - » a veces se le añade un óxido metálico

3. Oxoácidos del Boro

4. Compuestos del Boro

- Acido bórico, H₃BO₃ (p. f. 171 °C)
 - producto habitual de la hidrólisis de la mayoría de los compuestos de boro
 - 1) Estructura
 - cristaliza en forma de escamas blancas transparentes, tacto ceroso

– estructura en capas

- » capas unidas mediante fuerzas de van der Waals
- » uso como lubricante
- moléculas H₃BO₃ unidas mediante enlaces de hidrógeno asimétricos
 - » casi lineales

parámetros estructurales H₃BO₃ (d en pm)

d(B-O) 136

d(O-H) 97

<(OBO) 120°

d(H····O) 272

21

(adaptada de: C. E. Housecroft, A. G. Sharpe, Inorganic Chemistry, 4^{th} ed, Pearson Ed. Ltd, 2012)

3. Oxoácidos del Boro

- Acido bórico, H₃BO₃
 - 2) Obtención
 - cristalización de disoluciones acuosas acidificadas de bórax (Na₂B₄O₇·10 H₂O)

$$Na_2[B_4O_5(OH)_4] \cdot 8 H_2O + H_2SO_4 \rightarrow 4 H_3BO_3 + Na_2SO_4 + 5 H_2O$$

- 3) propiedades ácido-base
 - actúa como ácido de Lewis, aceptando un grupo OH-
 - » formando una entidad tetraédrica

$$H_3BO_3(ac) + 2 H_2O(l) \Leftrightarrow [B(OH)_4]^-(ac) + [H_3O]^+(ac)$$

- -ácido débil, p K_a = 9,2 (¿oxígenos terminales?)
- ¿por qué la acidez aumenta en presencia de 1,2-dioles (p. ej. glicerina o manitol)?

» con manitol [HOCH₂-(CHOH)₄-CH₂OH]
$$\rightarrow$$
 pK_{aparente} = 5,15

3. Oxoácidos del Boro

4. Compuestos del Boro

- 1.- Acido bórico, H₃BO₃
 - 3) propiedades ácido-base
 - ¿por qué la acidez aumenta en presencia de 1,2-dioles (p. ej. glicerina o manitol)?

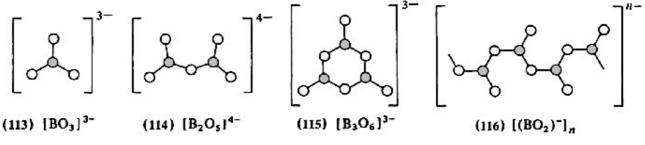
$$H_3BO_3(ac) + 2 H_2O(l) \iff [B(OH)_4]^-(ac) + [H_3O]^+(ac)$$

$$[B(OH)_4]^-(ac) + 2 RR'C(OH)-C(OH)RR' \rightarrow 4 H_2O(I) + \begin{bmatrix} RR'C-O & O-CRR' \\ RR'C-O & B \end{bmatrix}$$

$$(reacción de condensación)$$

$$(RR'C-O - CRR')$$

- 4) reacción de condensación con alcoholes en presencia de H₂SO₄(conc)
 - -formación de alcóxidos de boro B(OR),
 - -con etanol → etóxido volátil e inflamable (llama de color verde)


$$H_3BO_3 + 3 CH_3CH_2OH \xrightarrow{-3H_2O}_{H_2SO_4} B(OC_2H_5)_3$$

23

4. Boratos

4. Compuestos del Boro

- •1.- Características generales
 - estructuras diversas y complejas
 - en los boratos se pueden presentar
 - aniones borato individuales (de 1 a 5 átomos de boro)
 - boratos de tipo polímero
 - constan de unidades trigonales planas $[BO_3]^{3-}$, tetraédricas $[BO_4]^{4-}$, o combinación de unidades planas y tetraédricas
 - en las unidades $[BO_3]^{3-}$ el enlace B–O [136~(pm)] es más corto que en $[BO_4]^{4-}$,
 - » ¿qué sugiere? \rightarrow cierto carácter π en las unidades planas

units containing B in planar BO₃ coordination only

$$[BO_4]^{5-}$$
 $[B(OH)_4]^{-}$

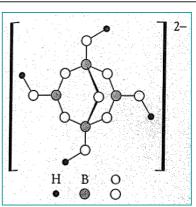
 $[B_2(O_2)_2(OH)_4]^{2-}$

units containing B in tetrahedral BO₄ coordination only

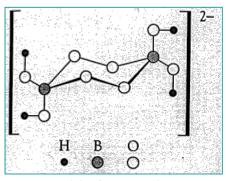
units containing B in both BO₃ and BO₄ coordination

(adaptadas de: N. N. Greenwood, A. Earnshaw, Chemistry of the Elements, 2nd ed, Butterworth Heinemann, 1998)

25


4. Boratos

- 2.- Bórax, Na₂B₄O₇·10 H₂O
 - realmente contiene el anión $[B_4O_5(OH)_4]^{2-}$,
 - se debe formular Na₂[B₄O₅(OH)₄] · 8 H₂O
 - principal fuente en la obtención del boro
 - fue utilizado como agente de limpieza
 - sustituido por el peroxoborato



- se debe formular Na₂[B₂(O₂)₂(OH)₄]
- agente blanqueante en detergentes
- se obtiene tratando el bórax con H₂O₂

(adaptada de: R.H. Petrucci, W.S. Harwood, G.E. Herring, *General Chemistry*, 8th ed, Prentice-Hall, 2002)

Estructura del ión borato en bórax

Estructura del anión peroxoborato

(adaptadas de: G. Rayner-Canham, *Química Inorgánica Descriptiva*, 2ª ed, Pearson Educación, 2000)

5. Boruros

- boro forma un gran número de compuestos binarios
 - muy duros, con altos p. f.'s y químicamente muy inertes
 - estequiometrías y estructuras complicadas
 - de gran importancia industrial
 - adecuados para fabricar objetos que han de soportar tensiones extremas,
 choque y temperaturas elevadas
 - » materiales refractarios, aspas de turbinas, chalecos antibala, toberas de cohetes,
- el más importante → carburo de boro, B₄C
 - se representa mejor como B₁₂C₃
 - consta de icosaedros $\,B_{12}\,,$ con átomos de carbono uniendo todos los icosaedros vecinales
 - obtención → reducción de B₂O₃ con C

$$2 B_2 O_3(s) + 7 C(s) \xrightarrow{\Delta} B_4 C(s) + 6 CO(g)$$

27

5. Boruros

- carburo de boro, B₄C
 - una de las sustancias más duras conocidas
 - sus fibras son muy resistentes → aplicación en chalecos antibalas
 - se usa en la parte inferior de los asientos de los helicópteros Apache para la protección de disparos realizados desde tierra
 - como reactivo de partida para la obtención de otros boruros

$$2 \operatorname{TiO}_2(s) + B_4C(s) + 3 C(s) \xrightarrow{\Delta} 2 \operatorname{TiB}_2(s) + 4 \operatorname{CO}(g)$$

- Boruros metálicos
 - se clasifican en dos grandes grupos
 - a) ricos en metal: M_3B , M_4B , M_5B , M_3B_2 , M_7B_3 ,
 - b) ricos en boro: MB_3 , MB_4 , MB_6 , MB_{10} , MB_{12} ,, MB_{66}
 - a) ricos en metal → átomos de boro se sitúan en los huecos de la red metálica
 - su conductividad eléctrica suele ser mayor que la del propio metal

4. Compuestos del Boro

5. Boruros

- Boruros metálicos
 - **b**) ricos en boro
 - contienen poliedros tridimensionales de B acoplados, situándose el metal en los amplios huecos disponibles
 - -los hexaboruros MB₆ se pueden considerar derivados de una red tipo CsCl,
 - obtención → gran variedad de procedimientos
 - » como se requieren altas temperaturas y no son volátiles, es difícil prepararlos en estado puro (y difíciles de purificar)

donde los aniones cloruro han sido sustituídos por octaedros \mathbf{B}_6

- desde 2001 gran interés en la investigación de los boruros
 - » accidentalmente se descubrió que MgB_2 es superconductor a T < 39 K (*Nature*, 2001, vol 410, p.63)

29